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Nilsson "0886# addressed the analytical solution of an elastic plastic softening bar in extension
within the framework of nonlocal plasticity\ making use to this purpose of a theory of nonlocal
plasticity preliminary devised in the same paper "Section 1#[ The results there presented*from the
thermodynamic arguments supporting the devised theory\ to the bar solution*are quite inter!
esting[ The writers\ involved in the same research area "Polizzotto et al[\ 0886 ^ Polizzotto and
Borino\ 0887#\ wish to discuss a few points of the paper in a fully collaborative spirit[ We use the
same notation as in Nilsson|s paper[

0[ The nonlocal plastic strain

Nilsson refers to a restricted nonlocality in which total and elastic strains are local\ whereas
plastic strain and a scalar internal variable "accumulated plastic strain# are not[ The writers believe
that there are not enough motivations in order to treat plastic strain as nonlocal within a theory
of nonlocal plasticity envisaged as a localization limiter[ The decomposition of the local total strain
into a local elastic part and a nonlocal plastic part seems not to be a consistent operation[ Baz³ant
and Pijaudier!Cabot "0877# and Baz³ant and Lin "0877# state that a nonlocal plasticity theory\ in
which the accumulated plastic strain is the only nonlocal variable\ is adequate[ There is no need
to make things more complex than necessary[ "But in the following we accept the Author|s idea to
treat plastic strain as nonlocal[#
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1[ The dissipation function

Nilsson remarks\ in the _rst paragraph of Section 1\ the necessity to account for nonlocality
residuals in order to derive correct local equations ^ however he states eqns "15# and "16# without
introducing any such residual\ through an argument aimed at just one to get rid of it[ In the writers|
view\ when we pass from "13#0 to a local expression as "15# we have to introduce the invoked
nonlocality residual and write\ instead of "15#\

Dp � "s#p = o¾p¦"q#hk¾¦P − 9 in B "82#

where P denotes the nonlocality residual satisfying

gB

P dV � 9[ "83#

It is the role of the nonlocality residual to guarantee that the ClausiusÐDuhem inequality "09# be
satis_ed locally\ i[e[ −c¦s = o¾¦P − 9\ everywhere in B[ The latter inequality may be utilized to
arrive at "82# without passing through "13#0[ On the other hand considering that the plastic
deformation mechanism is locally described by o¾p and k¾ which are the independent evolutive
variables "i[e[ to be governed by the plastic ~ow laws#\ the plastic dissipation density Dp must take
on a bilinear form as

Dp � S = o¾p¦Qk¾ \ in B "84#

where S and Q are some "nonlocal# thermodynamic forces to be identi_ed[ Comparing "82# and
"84# with each other gives

P � S = o¾p¦Qk¾−"s#p = o¾p−"q#hk¾ "85#

and substituting this expression into "83#\ we have

gB

ð"S−"s#p# = o¾p¦"Q−"q#h#k¾ Ł dV � 9[ "86#

Since "86# must hold for any choice of the plastic mechanism "o¾p\ k¾ #\ we obtain

S � "s#p\ Q � "q#h in B[ "87#

As a consequence\ it is P 0 9\ and Dp of either "82# and "84# coincides with "15# and complies with
"16#[ The consequence of the above is that*according to the writers| view*the zero!residual
expression of Dp given by "15# and "16# is exact for the proposed model[ Note that\ had we used
"13#1 instead of "13#0 and written "82# as

Dp � s = ðo¾pŁ¦qðk¾Ł¦P "88#

we would have obtained the same result as "87# but
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P � "s#p = o¾p¦"q#hk¾−s = ðo¾pŁ−qðk¾Ł[ "099#

2[ The plastic ~ow laws

These laws are aimed to provide the evolutive variables o¾p and k¾ \ at any given state of the
material[ In the writers| opinion\ a consistent way to write the plastic ~ow laws for nonlocal
plasticity is to relate the variables "o¾p\ k¾ # to the corresponding thermodynamic forces\ ""s#p\ "q#h#\
displayed by the zero!residual bilinear!form dissipation\ Dp\ in "15#\ through a convex yield function
having as arguments these same forces\ i[e[ f""s#p\ "q#h# ¾ 9[ The simple application of the
normality rule then gives ]

o¾p � l¾
1f

1"s#p

\ k¾ � l¾
1f

1"q#h

in B "090a#

f""s#p\ "q#h# ¾ 9\ l¾ − 9\ l¾f""s#p\ "q#h# � 9 in B\ "090b#

which describe the constitutive behaviour of the entire set of material particles included in B[ The
nonlocal nature of "090# is twofold ] _rst because "090# are a set of domain equations\ second
because the material state is there described by the "nonlocal# weighted stresses[

Author\ in Subsection 1[1[1\ proposed a di}erent procedure to derive the plastic ~ow rules "21#[
To this purpose\ he adopts a yield function as f"s\ q# ¾ 9 with driving forces "s\ q# and tries to
derive these plastic ~ow rules as the KuhnÐTucker conditions of a maximum dissipation principle
as in "18#[

These writers wish to demonstrate that choosing the local stresses s\ q as driving forces and a
yield function as f"s\ q# ¾ 9 leads not to "21# but rather to plastic ~ow rules for the nonlocal
evolutive variables ðo¾pŁ\ ðk¾Ł\ as it can be expected from "13#1 where s\ q appear as thermodynamic
forces corresponding to ðo¾pŁ\ ðk¾Ł\ respectively[

Following the Lagrange multiplier method as in Nilsson|s paper "but with more precise details#\
we address the problem ]

max
"s\ q#

Dp"s\ q ^ o¾p\ k¾ # s[t[ f"s\ q# ¾ 9 in B "091#

where Dp is the functional

Dp � 0gB

w½ p"x\ z#s"z# dV"z#1 = o¾p"x#¦0gB

w½ h"x\ z#q"z# dV"z#1 k¾ "x# "092#

x being any _xed point in B[ The Lagrangian reads

Lp � −Dp"s\ q ^ o¾p\ k¾ #¦
0

V gB

g¾"x\ z# f"s"z#\ q"z## dV"z# "093#

where g¾"x\ z# − 9 is the pertinent Lagrangian multiplier and the "irrelevant# division by V � V"B#
is due to dimensionality reasons[ The _rst variation of Lp is
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dLp � gB

ds"z# = $−w½ p"x\ z#o¾p"x#¦
0

V
g¾"x\ z#

1f

1sbz% dV"z#

¦gB

dq"z# $−w½ h"x\ z#k¾ "x#¦
0

V
g¾"x\ z#

1f

1qbz% dV"z#¦gB

dg¾"x\ z# f"s"z#\ q"z## dV"z#[ "094#

Thus\ the optimality conditions are ]

w½ p"x\ z#o¾p"x# �
0

V
g¾"x\ z#

1f

1sbz
w½ h"x\ z#k¾ "x# �

0

V
g¾"x\ z#

1f

1qbz "095a#

f"s\ q# =z ¾ 9\ g¾"x\ z# − 9\ g¾"x\ z# f"s\ q# =z � 9 "095b#

which hold for all z $ B and every x $ B[ The apparently strange form of "095a# is due to the
particular format given to the maximum dissipation principle\ indeed not consistent with the
dissipation representation "13#1[ But we can equally derive the pertinent result by integration of
"095# with respect to x $ B[ Remembering "7# and with the notation

l¾ "z# �
0

V gB

g¾"x\ z# dV"x#\ "096#

we obtain\ for all points z $ B\

ðo¾pŁ � l¾
1f

1s
ðk¾Ł � l¾

1f

1q
"097a#

f"s\ q# ¾ 9\ l¾ − 9 l¾f"s\ q# � 9[ "097b#

Equations "21# and "23# are somewhat di}erent than "097a#[ The procedure leading to "21# in the
paper should perhaps be reconsidered[

3[ The maximum dissipation principle

Once the appropriate driving forces for plastic yielding have been speci_ed "i[e[ "s#p and "q#h in
our approach#\ the format to give to the above principle is\ in the writers| opinion\ strictly related
to the way in which the assigned plastic mechanism is described\ as well as to the format of the
bilinear form taken on by the corresponding dissipation[ For instance\ if we assign the mechanism
through the local variables o¾p\ k¾ \ we have to use Dp of "13#0 and write ]

Dp ðo¾p\ k¾ Ł � max
"s\q# gB

""s#p = o¾p¦"q#hk¾ # dV s[t[ f""s#p\ "q#h# ¾ 9 in B "098#

which admits as KuhnÐTucker conditions the equation set "090#\ the latter being the corresponding
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plastic ~ow rules[ But\ if the plastic mechanism is assigned through nonlocal strain variables\ say
o¾p
NL and k¾NL\ we have the use "13#1 and the principle takes on the form ]

Dp ðo¾p
NL\ k¾NLŁ = max

"s\q# gB

"s = o¾p
NL¦qk¾NL# dV s[t[ f""s#p\ "q#h# ¾ 9 in B "009#

which can be shown to admit the KuhnÐTucker conditions ]

o¾p
NL �W l¾

1f

1"s#p w\ k¾NL �W l¾
1f

1"q#h w in B "000a#

f""s#p\ "q#h# ¾ 9\ l¾ − 9\ l¾f""s#p\ "q#h# � 9 in B "000b#

where the symbol ð = Ł denotes the operation in "7#\ i[e[ it is

o¾p
NL � ðo¾pŁ\ k¾NLðk¾Ł in B "001#

with o¾p\ k¾ given by "090a#[
The inconsistency of the maximum dissipation principle as expressed by "18#\ with the ensuing

procedure to arrive at "21#\ is evidentiated by the fact that the plastic work obtained from "21#
does not coincide with "15#\ as in fact

bps = o¾p¦bhqk¾ � "s#p = o¾p¦"q#hk¾ [ "002#

4[ The bar solution

In Nilsson|s paper\ Section 2\ the central cross section of the uniform bar is given a reduced
resistance such as to force the local plastic strain to be activated only in this section[ The nonlocal
plastic strain is on the contrary distributed throughout the bar length with a rapidly decaying
pattern from the middle cross section source to the bar ends\ but in e}ect remaining di}erent from
zero everywhere[ Such a constitutive behaviour\ by which the locally produced plastic strain is
redistributed in the whole structure|s volume\ or in large portions of it around the source points\
makes the proposed nonlocal plasticity model to rule out strain localization phenomena\ rather
than to limit them[ The criterion used in the paper to _nd the {width of the localized zone| con_rms
that such a zone does not exist as a strict material feature[ In fact\ this criterion is equivalent to
stating ] the width of the strain localization band is that of the bar segment where*in the softening
regime*the total strain does not decrease\ i[e[ o¾ − 9\ with increasing kinematic load Du\ and thus
where the "nonlocal# plastic strain\ ðopŁ\ increases not less than the elastic strain s:E decreases[
Such a criterion will likely lead to a localization bandwidth which in general depends on the
structural problem features more than size e}ect considerations may justify ^ additionally\ it
apparently is not unique[

Solutions of the above bar problem in the softening regime have been given in the literature
"e[g[ Baz³ant and Lin\ 0877 ^ de Borst and Mu�hlhaus\ 0881 ^ Polizzotto and Borino\ 0887# and all
of them are characterized by a softening plastic band the length of which is a strict material
parameter\ whereas the whole remaining part of the bar unloads elastically[ The solution presented
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in the paper has no such characteristics[ These writers wonder whether the introduction of non!
locality for plastic strain is responsible for such a discrepancy[

5[ Conclusions

Thermodynamic aspects of nonlocal "and gradient# plasticity\ and the consistency of the related
plastic ~ow laws as well\ are main points under debate at present[ The writer|s view on these points
can be\ in conclusion\ be summarized as follows with reference to nonlocal plasticity "see Polizzotto
and Borino\ 0887 ^ Polizzotto et al[\ 0886a\b# ]

"0# For a nonlocal plasticity theory as a strain localization limiter\ it is su.cient to treat as
nonlocal the scalar internal variable attached to the isotropic hardening\ see Baz³ant and
Pijaudier!Cabot "0877# and Baz³ant and Lin "0877#[

"1# The ClausiusÐDuhem inequality holds globally for any subdomain of the body en!compassing
the region"s# of it where a di}use plastic deformation mechanism takes place and which cannot
become smaller than some limit related to the material internal length scale[ However\ the
above inequality can be given a point!wise format provided a suitable nonlocality residual is
introduced[ The usual thermodynamic arguments can then be applied to derive the relevant
state equations and dissipation density[

"2# This dissipation density includes the nonlocality residual as an additional term[ The latter can
be determined observing that*within the "insulated# region where a di}use plastic mechanism
takes place*the dissipation density can be expressed as a bilinear form in terms of the local
evolutive variables and the related thermodynamic forces[

"3# The latter thermodynamics forces are the appropriate driving forces for plastic strain and thus
the arguments of the yield function "and of the plastic potential function in case of non!
associated plasticity#[

"4# The plastic ~ow laws can be written straightforwardly by application of the normality rule "or
in analogy with it in case of nonassociated plasticity#[ At di}erence with local plasticity "in
which these laws concern the constitutive behaviour of a single material particle#\ in nonlocal
plasticity the plasticity ~ow laws are domain equations governing the behaviour of the entire
collection of material particles[

"5# For associated nonlocal plasticity\ a maximum dissipation principle can be written considering
the overall dissipation of the body[ Its speci_c format depends on the way the assigned di}use
plastic mechanism is speci_ed in the body either with local\ or nonlocal\ evolutive variables[

The theory here above synthesized is centred upon the initial choice of the local evolutive
variables "e[g[ o¾p\ k¾ # and of the "regularization# operator"s# transforming these local variables into
nonlocal ones "e[g[ o¾pc ðo¾pŁ\ k¾c ðk¾Ł in Nilsson|s approach#[ It turns out to possess a uni_ed
character since the mentioned regularization operator"s# can be chosen\ within certain limits\
arbitrarily\ either as an integral operator for nonlocal plasticity or as a di}erential operator for
gradient plasticity[ It is worth mentioning that\ in case of gradient plasticity\ the procedure
envisaged at point "2# above to determine the nonlocality residual leads also to the "nonambiguous#
thermodynamic boundary conditions which must be appended to the plastic ~ow laws at point
"4# ^ furthermore\ the maximum dissipation principle of point "5# contains suitable boundary
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conditions as additional constraints[ This enhanced potentiality of the writers| theory can be
envisaged as a manifestation of its thermodynamic consistency[

The results presented by Nilsson "0886# provide an e}ective stimulus within a rather new research
area\ now in rapid expansion[ The present discussion indicates that some of the hypotheses on
which Nilsson|s paper is based seem not to be in full agreement with thermodynamics[
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